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ABSTRACT 

 

Introduction 

Ultrafast imaging in medical ultrasound is becoming an important reconstruction method with high frame rates and 

new clinical applications such as shear wave elastography and microvascular imaging. However, the unfocused waves 

lead to low-quality images and required additional compounding to mitigate the image degradation. Recently, deep 

learning (DL) based image reconstruction methods showed great potential for high-quality ultrafast imaging and the 

conventional methods mostly used supervised learning approaches. However, acquiring high-quality ground-truth data 

in medical ultrasound for supervised learning is not only extremely challenging but also limited the performance of DL 

models. 

 

Aims & Methods 

To address this critical issue, this study proposes a new unsupervised learning approach for high-quality ultrafast 

ultrasound imaging. Unlike conventional methods that train DL models using supervised learning with imperfect 

ground-truth data, our method employs unsupervised learning using signal coherence with a unique loss function. 

Because the trained DL models aim to maximize signal coherence, our model minimizes unnecessary secondary lobes 

and noise, resulting in improved spatial and contrast resolution. Additionally, our trained model is a universal 

beamformer since it operates on complex baseband signals, making it suitable for various clinical applications such as 

vector flow imaging and microvascular imaging. 

 

Results 

To assess the performance of the proposed method (DL-DCL), traditional beamformers (i.e., DAS and DMAS) and other 

DL-based methods (i.e., supervised learning method (SP) and generative adversarial network (GAN)) were compared. 

Our proposed method showed far improved results in spatial and contrast resolution, and the results were even 

comparable to the compounded image (75-PWs) with a single PW. Also, our method surpassed the conventional SP 

and GAN models without the generation of ground-truth data. 



 

 

Conclusion 

These results demonstrated that the proposed unsupervised learning approach can overcome the limitations of 

conventional DL methods based on supervised learning, and it also showed great potential in clinical settings with 

minimal artifacts. 
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Materials 

 

Figure 1. Illustration of plane wave imaging for ultrafast ultrasound imaging. Plane wave imaging insonifies the entire 

imaging field to enable high frame rates (left). The degraded imaging quality can be improved by coherent 

compounding (right), but compounding using multiple transmissions sacrifices frame rates. 

 

 
 

 

Figure 2. Schematic representation of the proposed unsupervised deep learning framework. (a) During the training 

phase, the deep learning model is trained using the signal coherence between the steered plane waves. (b) After 

training, the trained model can be utilized as a beamforming module to enhance the imaging quality of a single 

plane wave transmission. 



 

 

 

Figure 3. Qualitative and quantitative assessment of experiments with wire-target and cyst-target phantoms. 

 

 
 

Figure 4. Qualitative and quantitative assessment of experiments using two publicly available in-vivo images. 
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OursDL-GANDL-SPDMASDAS 75PWsDAS 1PW
16.3110.3511.728.4914.589.13CNR (dB)
0.990.920.960.900.990.87gCNR
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DAS (1-PW) DAS (75-PWs) DMAS (1-PW)

DL-SP (1-PW) DL-GAN (1-PW) DL-DCL (1-PW)

DAS (1-PW) DAS (75-PWs) DMAS (1-PW)

DL-SP (1-PW) DL-GAN (1-PW) DL-DCL (1-PW)

Ours
(1-PW)

DL-GAN
(1-PW)

DL-SP
(1-PW)

DMAS
(1-PW)

DAS
(75-PWs)

DAS
(1-PW)

0.390.590.390.390.390.5910mm

0.390.590.490.390.390.5920mm

0.390.590.390.390.390.5930mm

0.390.690.490.390.390.5940mm

Table 1. The measured lateral FWHM (mm) for the four wire targets.

Ours
(1-PW)

DL-GAN
(1-PW)

DL-SP
(1-PW)

DMAS
(1-PW)

DAS
(75-PWs)

DAS
(1-PW)

0.490.490.490.390.490.4910mm

0.490.490.490.490.490.4920mm

0.490.490.390.490.390.4930mm

0.490.490.490.490.490.4940mm

Table 2. The measured axial FWHM (mm) for the four wire targets.



 

DAS (1-PW) DAS (75-PWs) DMAS (1-PW)

DL-SP (1-PW) DL-GAN (1-PW) DL-DCL (1-PW)

DAS (1-PW) DAS (75-PWs) DMAS (1-PW)

DL-SP (1-PW) DL-GAN (1-PW) DL-DCL (1-PW)

OursDL-GANDL-SPDMASDAS 75PWsDAS 1PW
18.6316.0214.8711.3116.1214.60CNR (dB)
0.990.990.990.950.990.99gCNR

OursDL-GANDL-SPDMASDAS 75PWsDAS 1PW
13.7912.5412.4011.5913.1512.17CNR (dB)
0.990.990.990.990.980.97gCNR
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